PC-CUBE, A Personal Computer Based Hypercube

Alex Ho, Geoffrey Fox, David Walker
Scott Snyder, Douglas Chang, Stanley Chen, Matt Breaden

206-49, California Institute of Technology,
Pasadena, CA 91125, USA

DOE/ER/25009--587

Terry Cole

DE88 015008

180-500, Jet Propulsion Laboratory
Pasadena, CA 91125, USA

Abstract: PC.CUBE is an ensemble of IBM PCs or
close compatibles connected in the hypercube topol-
ogy with ordinary computer cables. Communication
occurs at the rate of 115.2 K-baud via the RS-232 se-
rial links. Available for PC-CUBE is the Crystalline
Operating System III (CrOS III), Mercury Operating
System, CUBIX and PLOTIX which are parallel I/O
and graphics libraries. A CrOS performance moni-
tor was developed to facilitate the measurement of
communication and computation time of a program
and their effects on performance. Also available are
CXLISP, a parallel version of the XLISP interpieter;
GRAFIX, some graphics routines for the EGA and
CGA; and a general execution profiler for determining
execution time spent by program subroutines. PC-
CUBE provides a programming environment similar
to all hypercube systems running CrOS 111, Mercury
and Cubix. In addition, every node (personal com-
puter) has its own graphics display monitor and stor-
age devices. These allow data to be displayed or
stored at every processor, which has much instruc-
tional value and enables easier debugging of applica-
tions. Some application programs which are taken
ftom the book Solving Problems on Concurrent
Processors |Fox 88] were implemented with graphics
enhancement on PC-CUBE. The applications range
from solving the Mandelbrot set, Laplace equation,
wave equation, long range force interaction, to Wa-
Tor, an ecological simulation.

MASTER

1. Introduction-

Parallel computer systems promise to provide
unprecedented high performance (in large configu-
rations) and better price/performance than sequen-
tial computers (in small configurations.) Commer-
cial distributed-memory parallel systems have been
available for a few years. Programming in a parallel
environment is not difficult. However, it is also not
as straight-forward as programming sequentially es-
pecially for those of us who have learned and done
so for many years. Programming parallel systems to
perform concutrrent computations requires new tech-
niques that are best learned through hands-on expe-
rience on real parallel computers.

High-performance parallel computers are not
asually available in academic environment. It is also
extravagant to use such a system to teach a class. An
alternative is to build your own parallel computer us-
ing already existing microcomputers [Ho 88, 88b| like
IBM personal computers in a mictocomputer labo-
tatory. This paper desctibes the use of PC-Cube
parallel system, an IBM PC-based entry-level hyper-
cube, as an instructional and developmental tool for
parallel processing.

2. PC-Cube, An Entry-Level Hypercube

The main objective of the PC-Cube project is to
develop a true hypercube system for use in a micro-
computer laboratory as an instructional and devel-
opmental tool for parallel processing. The PC-Cube
package consists of:

‘1) Communication hardware requitement which
enables the hypercube connection of IBM PC's
or close compatible.

(2) Software environment for the PC-based hyper-
cube which allows applications to be written in
CrOS III [Kolawa 86), Cubix [Salmon 86), or
Metcury [Lee 86).

(3) Toillustrate the use of the PC-Cube package by

DISTRIBUIING (F THIS GOCUMENT 18 UNLIMITED

;

running some of the applications found in Solv.
ing Problems on Concurrent Processors.

PC-Cube 1s an ensemble of IBM PCs or com-
patibles interconnected in the hypercube topology.
The PCs can be thought of being located at the ver-
tices of an imaginary hypercube and the edges of the
multi-dimensional cube are replaced by ordinary ca-
bles. The control processor(CP), another PC, is con-
nected to Node 0 which is one of the node PCs. In-
stead of using special communication channels as in
the commercial hypercubes, PC-Cube uses inexpen-
sive RS5-232 serial ports. To exploit the maximum
communication capacity of the ports low level rou-
tines have been written to address the UART (Uni-
versal Asynchronous Receiver, Transmitter) chip on
the serial board. A very high baud rate, which is
hardware limited, of 115.2 Kbaud for node to node
data transmission is achicved. PC-Cube provides a
system that is balanced between processing and com-
munication speed. Applications that are written for
PC-Cube will also run on larger and faster commer-
cial hypercubes with little or no modification.

3. Advantages of Using PC-Cube

As an instructional tool PC-Cube has several
advantages over the commercial hypercubes. One
major advantage is its ease of use. Nodes of com-
mercial hypercubes are not equipped with I/0 de-
vices such as display monitors, yet each node of a
PC-Cube, i.c., a PC, always has either a monochrome
or a color display. The availability of a display device
at cach node allows users to see and to demonstrate
how parallel algorithms work. The graphics display
capability has high educational value, as applications
can display their results in a more informative and
descriptive manner. Viewing the actions of an appli-
cation at the nodes also facilitates debugging because
errors can be pinpointed to specific nodes. In addi-
tion, each node has a keyboard, which makes it pos-
sible to implement multi-user applications such as a
multi-user expert systems.

Although DOS has a 640 Kbyte memory bar-
rier, users of PC-Cube employing parallel processing
technique such as domain decomposition can perform
computation on large data sets simply by decompos-
ing them into smaller subsets snd distributing over
the system. Roughly speaking, a 2 Mbyte data set
can be distributed among 4 node processors which
inakes the per node memory requirement drop to 512
Kbyte, ot if 8 node processors are used each node
would only need 256 Kbyte memory.

Another advantage that may not seem obvious
is that PC-Cube is extremely easy to install or take

avart. This feature of PC-Cube provides the oppor-
tunity for every user to have hands-on experience in
setting up a hypercube. Understanding the physi
cal connectivity of a hypercube and its relation with
the control processor in the beginning should make it
easter to implement communication strategies subse-
quently.

Even when several PCs are physically connected
as . hypercube, users can still use them as stand-
alone computers to run their usual PC software. In
addition, the maintenance cost of a PC-Cube is very
low as compated to that of a commercial hypercube.

4. Hardwate Requitements

The hardware requitements for PC-Cube de-
pend on the dimension of the hypercube to be set up.
PC-Cubes of dimensions up to 3 have been tested In
principle, however, PC-Cube can be made larger.

PC-Cube hardware essentially consists of three
components:

(1) One IBM PC or compatible for each node in the
hypercube and for the control processor (CP};

(2) Standard RS-232 serial port(s) in each PC;

(3) Ordinary cables with at least 7 wires to be used
to connect the node PCs ard the control pro-
cessor.

In general, if n is the number of nodes and d is
the dimension of the hypercube, then

n =29
and

of PCs =1 4 2¢
#ofcables:l+nx§
of serial ports =2+ nxd

Each node and the CP must be an IBM PC
or close compatible, set up as described in the IBM
Guide to Operations manual. Although a hard disk
is not a required device for PC-Cube, it is recom-
mended that the computer on which applications are
to be developed (usally the CP) shall be equipped
with one. The system software and utilities does not
depend on the type of display monitor or graphics
adapter. However, some of the included demonstra-
tion programs will display graphics at the CP and the
node monitors. This means graphics monitors are re-
quired for these graphics demonstration programs to
work properly.

Specifically, a PC-Cube of dimension d requires
d serial ports in each node, except for Node 0 which
requires d + I ports. The CP always requires one
serial port.

Each serial port must be located at a unique
address in the I O address space. When purchasing
serial ports for PC-Cube, it is important to ensure
that the [O addresses used by the serial ports do not
conflict with each other {or with the I O addresses of
any other hardware on the PC))

PC-Cube keeps a list of possible serial port ad-
dresses. During initialisation, PC-CrOS examines
each one of these addresses in turn to determine
whether or not there is a seriai port located at that
address. The first port that PC-CrOS finds becomes
channel 0. The second port that it finds becomes
channel 1, and so on.

A PC-Cube cable is an ordinaty cable with at
least 7 wites and two 25-pin RS-232 connectors. The
cable is used to tie the following pins of the two RS-
232 connectors together as indicated in Fig. I:

2
3
4
2
7
8
20 0
2

Fig.1 Cable Configuration

In addition, connect pins 8 and 22 to 7 of the same
connector using short pieces of wire, i.e., short pins 8
and 22 to ground (pin 7).

5. Software Requirements

Fot PC-Cube to run propetly the minimum soft-
ware tequired are as follows:

(1) DOS version 2.0 or later (except for the execu.-
tion profiler which requires at least 3.0)

(2) A C compiler. The PC-Cube software pack-
age was developed with Microsoft C version 4.0.
Most of the code in this package also works with
Turbo C version 1.0.

If a user knows how to use the Microsoft mixed
language interface, the C library provided by this

package can be accessed from MS-Fortran or MS.
Pascal programs.

6. The PC-Cube Package

Two hypercube communications systems have
been ported from the Caltech JPL Matk Il hyper-
cube to the PC-Cube envitonment: CrOS IIl and
Mercury Operating System. Also ported are the Cu-
bix and Plotix parallel I. O and graphics library.

PC-Cr0OS, PC-MOS, PC.Cubix and PC-Plotix
are highly compatible wiih the original versions. A
well-written hypercube application can be ported
among PC-Cube and other commetcial hypercubes
with only minimal modifications. In other words,
programmers who use PC-Cube for code development
can scale up the sise of the physical problem and run
the same piece of code on other hypetcubes.

PC-specific utilities include a build-in perfor-
mance monitor for PC-CtOS, a genetal execution pro-
filer, and a simple graphics library. Brief description
of PC-Cube system software and utilities are given as
follows (for detail descriptions of the software, please
see the C’P documents referenced):

PC-CrOS

CrOS is a channel-based, point to point polled
communication system. CrOS allows directly con-
nected nodes of a hypercube to communicate with
each other. Messages can be sent over long distance
by using several hops but the programmer has to pro-
vide the forwarding instructions explicitly.

When a node is ready to send a message, that
node is blocked until the receiver is ready. Similarly,
if 8 node wants to receive a message, that node is
blocked until the message is sent. Since the proces-
sors cannot proceed until the read or write is done,
the processors move in locksteps through their pro-
gram. Each read and write command resynchronises
the processors.

In order to achieve reliable communications PC-
C1OS uses synchronous communications protocol.
With the serial port hardware configured to operate
at 115 Kbaud, PC-CrOS is able to achieve an effective
data transmission rate of approximately 47 Kbaud.

PC-MOS

MOS is an interrupt-driven communication sys-
tem which provides the nodes of a hypercube the ca-
pability of performing message passing between nodes
that are not physically linked by a channel. When a
packet arrives, the processor is interrupted and the
packet is read. If a packet for another processor a:-
rives, it will be forwarded without any effect on the

ipplication program. In other words, message trans-
mission and reception can proceed concurrently with
the exerution nf the application program. Since pro-
cessors are interrupted for read and write, there is no
requirement of synchronisation between the commu-
nicating processors, i.¢., the processors can run asyn-
chronously. MOS also provides synchzonous mode of
com;nunication similar to C1OS.

On a PC-Cube, CrOS communications are typ-
ically twice as fast as MOS communications.

PC-Cubix

Cubix is a model of programming a hypercube
without programming the control processor. It trans-
parently provides the functionality of I/O to the node
program. One of the features of Cubix is that a prop-
erly written Cubix program for hypercube computers
can be compiled and executed with no changes on
a sequential machine. The only requirement is that
an appropriate Cubix library exists on the sequential
computer.

PC-Cubix implements a subset of the Cubix li-
brary. Unix functions such as getgid, ttyname, set-
gid, getlogin are not supported. Additional functions
such as mkdir, rmdir, ungetch, getch, putch, kbhit
are available for PC-Cubix.

It also allows I/O operations to be performed nn
the nodes. For low.level 1/O, this is done by intro-
ducing anotlier set of low-level routines that operate
on the nodes instead of on the CP. For stream 10,
locality is just another stream attribute (like singu-
lar/multiple.) Thus, the same stream 1/O routines
can be used to manipulate both local and CP file
streams. Local [/O provides useful information for
debugging concurrent programs.

PC-Plotix

Plotix is a simple graphical system for the hy-
percube. It runs under Cubix and Unix. It is an
extension to Cubix which allows node programs to
draw graphics on the CP in a portabls manner.

PC-Plotix is an implementation of Plotix. PC-
Plotix does not support functions such as poiygon fill
and certain line types. It supports both CGA and
EGA.

CrOS Performance Monitor

CrOS Performance Monitor is a facility built
into PC-CrOS. It allows the measutement of how
much time a program or program segment spends
on computation, communication, idling ~ waiting for

communication to begin (usually communication and
idle time is lumped together as communication over-
head), and on performing file I. O {rom inside of a
C1OS function.

A user can at any time turn data collection on
or off, retrieve the current statistics, or prints a sum-
mary of profiling statistics to a file stream. The C:0S
Performance Monitor has a real-time mode. When
real-time mode is turned on, this facility will contin-
uously display on each node both the current state
of CrOS (computing, sending, receive, or waiting on
a particular channel) and the timing data, presented
in a graphical form. The performance monitor pro-
vides information about load.balancing of various al-
gorithm implementations and indicates inefficiencies
of different decomposition strategies.

Execution Profiler

While the CrOS Performance Monitor keeps
track of profiling statistics for CrOS-specific func-
tions, the execution profiler will work on parallel and
sequential programs. Programs are large, complex
systems. A personal computer executes hundreds of
thousands of instructions per second. The execution
profiler is a tool which samples the instruction pointer
(IP) of a PC at fixed time interval and gives a mea-
sure of how a progtam or program segment spends its
execution time in a statistical sense.

The function init_prof() opens a file for stor-
ing profiling data, and end_prof() closes the file. The
start_prof() and stop_prof() functions turn profiling
on and off. A special featute of this execution pro-
filer is that it can accumulate profiling statistics fol-
lowing the control flow of a program instead of its
structure by calling start_special() and stop special()
in the program. Two kinds of report can be gener-
ated: 4 symbol or a line report.

Users can use the execution profiler to fine-tune
their programs for bctter performance.

GRAFIX

It is a collection of simple graphics primitives as
well as functions to emulate some of the commercially
available HALO graphics library. PC-Plotix uses the
Grafix library to perform the actual graphics opera-
tions. PC-Cube programs using functions provided
directly by Grafix or any other PC graphics libraries
are not portable to other commercial hypercubes.

7. Expetience with Code Compatibility

Several application programs were taken from
the Caltech/JPL Mark Series hypercube and ported

to a PC-Cube. The algorithms used in these pro-
grams are described in detail in the book Solving
Problems on Concurrent Computers. These
ptograms range from solving the 1.D wave equation
for a simple vibrating string, 2-D Laplace equation
in rectanguiat coordination using finite difference ap-
proximation, a 3-D simulation of the dynamics of a
number of particles governed by an attractive long
range force such as gravity, to an ecological simula-
tion of sharks and fish on the toroidal planet Wa-Tor
[Dewdney 85]. Also, a Mandelbrot set -olver |{Dewd-
ney 84 to explore the Julia curve was written.

Except for the graphics enhancement the PC-
Cube version of these application prograins are ex-

Timing For CrOS Lapiace Demo

1000
800 +4
I3 600
H
g 400 o 160x80 grid
L
200
0 Ll LS L3 L]
0 2 4 6 8 10
of nodes
Fig. 2

Shows the decreasing amount of time needed to compute 100
iterations of updating on a 160x80 grid when an increasing
number of processors are used. In this case the problem is
solving the 2-D Laplace equation. The operating system used to
get this data was CrOS [II.

Timing For Mercury Laplace Demo

500
400
<
£ 300+ 80x80 grid
200
100 M Y M 4 v T T v
0 1 2 3 ‘ 5
of nodes
Hig.4

Shows the decreasing amount of time needed to compute 100
iterations of updating on & 80x80 grid when an increasing
number of processors are used. In this case the problem is
solving the 2-D Laplace equation. The operating system used to
get this data was Mezcury.

actly the same as the implementations on the Mark
Series Hypercubes, thus demonstrating software crm
patibility of PC-Cube with current CrOS !1I, Mer.
cuty, and Cubix programs.

8. Efficiency of PC-Cube

Although PC-Cube is designed to be an educa-
tional tool for parallel processing and not for high-
petformance, it provides petformance speed up rel-
ative to the node PCs. Figures 2 to 5 illustiate
the timing and efficiencies of PC-Cube applications
using both PC.-CrOS and PC-MOS communications
to implement a Laplace Equation Solver on a 2-
dimensional grid.

Efficlency Data For CrOS Laplace Demo
120

160x80 grid

sificiency
g 8

40x20 grid

[+] 2 4 6 8 10
¢ of nodes

Hg.3

Shows the efficiency (= speedup/# of nodes) of computing 100
iterations of updating on a 160x80 grid and on a 40x20 grid for
the Laplace demo. Note that the efficiency is better for the
160x80 grid problem because the communications overhead is
smaller so each node spends a larger proportion of its time on
computation. The operating system used to get this dsta was
CrOS 11

Efticlency Data for Mercury Laplace Demo

120
100
fry 80 4 80x80 grid
4
é w h
1 20x20 grid
40 =
4
20 v L} v L] T b L
0 1 2 3 4 5

of nodes
Eg S
§hows the efficiency (= speedup/# of nodes) of computing 100
iterations of up'sting on « 80x80 grid for the Laplace demo.
Note that the efficiency decreases as the number of processors
increases. This is due to the increasing amount of
communication needed with more processors. The operating
system used to get this data was Mexcury

It 1s indicated in the figures that the finer the
grid, the less the communrication overhead relative to
the computational load. Thus, the higher the effi-
ciency. The CrOS version of Laplace Solver achieves
about 75% efficiency with 8 nodes working on a 160
+ 80 grid.

9. Conclusicﬁl_s

PC-CUBE is an inexpensive and easy to install
hypezcube system. It is an indispensable tool for
learning hypercube programming and paralle! pro-
cessing in general. The capability of nodal text and
graphics output is particularly important for debug-
ging purposes as well as providing insights into the
physical problem at hand. The performance mon-
itor aids the development of efficient load-balanced
concurrent codes for beginners and experienced pro-
grammers. The execution profiler helps users to fine-
tune their programs, both sequential and parallel, for
higher performance. Last but not least, concurrent
programs that are written for the PC-.CUBE is up-
ward compatible. The same piece of code can be
straight-forwardly ported to the larger commercial
hypercube computers with little or even no modifi-
cation.

10. Appendix
PC.CXLISP (concurrent XLISP) [Ho 881, a par-
allel version of the public domain software XLISP - an
experimental LISP interpretes, has been imnplemented
on PC-Cube. CXLISP adds Mercury communication
functions to the original XLISP interpreter.

When CXLISP is executed on PC-Cube, the
CP prints the CXLISP startup message and down-
loads the CXLISP node program. Aiter the down-
load process completes, the CP enters the read-eval-
print loop and wait for input from the keyboard. The
nodes, each running an XLISP interpreter, also print
the CXLISP startup message and enter the read-eval-
print loop; however, they do not read input from key-
boards. Rather, they wait for a Mercury message
from other nodes or from the CP.

There is also an alternate version of CXLISP
node program which takes input from keyboards at
the nodes instead of Metcury messages. This version
is useful for debugging.

CXLISP is not distributed with the PC-Cube
package because the original author of XLISP has not
yet been contacted in this regard.

[Dewdney 84]

References
A K. Dewdney, Scientific America, Vol. 251, #6, pp. 16-24, Dec. 1984,
Jon Flower and Roy Williams, “Plotix - A Graphical System to Run Cubix and Unix", Caltech

Geoftrey C. Fox, Mark A. Johnson, Gregory A. Lysenga, Steve W. Otto, John K. Salmon,
and David W. Walker, “Solving Problems on Concurrent Processors”, pub. Prentice-Hall,

Alex W. Ho, Scott Snyder and Douglas Chang, “User's Guide for PC-Cube, The IBM PC-based

Ho et al.,, “MAC-Cube, A Macintosh-based Hypercube,” this volume, 1988.
Alex W. Ho and Scott Snyder, “CXLISP - A Concurrent XLISP Interpreter on the Hypercube”,

Adam Kolawa and Barbara Zimmerman, “CtOS III Manual”, Caltech report C?P 253B, 1986.
Roger Lee, “Mercury I/O Library User's Guide, C Language Edition", Caltech report C3P

[Dewdney 85] A K. Dewdney, Scientific America, Vol. 253, #2, pp. 18-23, August 1985,
[Flower 26]
report C3P 285, 1986.
[Fox 88]
Eaglewood Cliffs, New Jersey, 1988.
{Ho 88]
Hypercube”, Caltech report CP 563, 1988.
[Ho 88b]
|Ho 88c]
Caltech report C>P 559, 1988.
[Kolawa 86|
[Lee 86|
301, 1986.
[Salmor. 86]

John Salmon, “Cubix: An I/0 System for the Hypercube”, Caltech report CP 285, 1986.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
er.n_p.!oyees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, produci, or
process d::sclosed‘ or represents that its use would not infringe privately owned rights. Rc‘fer-
ence herein to any specific commercial product, process, o7 service by trade name, trademark,
manufa.cturer. or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and_ opinions of authors expressed hercin do not necessarily state or reflect those of the
United States Government or any agency thereof.

